27 research outputs found

    Implementation of Bus Rapid Transit in Copenhagen: A Mesoscopic Model Approach

    Get PDF
    Bus Rapid Transit (BRT) has shown to be an efficient and cost-effective mode of public transport, and has gained popularity in many cities around the world. To optimise the operations and infrastructure it is advantageous to deploy transport models. However, microscopic models are very inefficient for large scale corridors due to the vast amount of data and resources required. Hence, it is relevant to investigate how to model and evaluate BRT efficiently. In this paper the effects of implementing BRT in Copenhagen is discussed including how to evaluate and model bus operations. For this purpose, a mesoscopic simulation model is developed. In the model bus operations are modelled on a microscopic level whereas the interactions with other traffic are modelled macroscopically. This makes it possible to model high-frequency bus services such as BRT lines in more details without the time consumption of micro-simulation models. The developed model is capable of modelling bus operations in terms of travel time and reliability including important mode-specific issues such as bus bunching. The model is applied to a BRT project proposal with different combinations of BRT elements. The model results show that infrastructure upgrades (busways and enhanced stations) ensure a reduction to travel time whereas no improvements to reliability occur. Upgrades to technology and service planning (pre-paid fare collection, boarding and alighting from all doors, special BRT vehicles, ITS, and active bus control) ensure an increase in service reliability whereas only small reductions to travel time are observed. By combining all BRT elements it is possible to obtain synergies where the improved reliability due to planning and technology elements makes it possible to utilise the infrastructure optimally. Hence, it is possible to increase commercial speed from 14.8 to 19.9 km/h and service reliability in terms of headway time regularity from 46% to 84% aggregated on both directions for the morning peak period making the implementation of BRT feasible from a pure financial point of view

    Effects of new bus and rail rapid transit systems – an international review

    Get PDF
    Cities worldwide are implementing modern transit systems to improve mobility in the increasingly congested metropolitan areas. Despite much research on the effects of such systems, a comparison of effects across transit modes and countries has not been studied comprehensively. This paper fills this gap in the literature by reviewing and comparing the effects obtained by 86 transit systems around the world, including Bus Rapid Transit (BRT), Light Rail Transit (LRT), metro and heavy rail transit systems. The analysis is twofold by analysing (i) the direct operational effects related to travel time, ridership and modal shifts, and (ii) the indirect strategic effects in terms of effects on property values and urban development. The review confirms the existing literature suggesting that BRT can attract many passengers if travel time reductions are significantly high. This leads to attractive areas surrounding the transit line with increasing property values. Such effects are traditionally associated with attractive rail-based public transport systems. However, a statistical comparison of 41 systems did not show significant deviations between effects on property values resulting from BRT, LRT and metro systems, respectively. Hence, this paper indicates that large strategic effects can be obtained by implementing BRT systems at a much lower cost

    BRT – højklassede busser i Danmark

    Get PDF
    Referat af special session ”BRT – højklassede busser i Danmark” mandag den 22. august 201

    Analysing improvements to on-street public transport systems: a mesoscopic model approach

    Get PDF
    Light rail transit and bus rapid transit have shown to be efficient and cost-effective in improving public transport systems in cities around the world. As these systems comprise various elements, which can be tailored to any given setting, e.g. pre-board fare-collection, holding strategies and other advanced public transport systems (APTS), the attractiveness of such systems depends heavily on their implementation. In the early planning stage it is advantageous to deploy simple and transparent models to evaluate possible ways of implementation. For this purpose, the present study develops a mesoscopic model which makes it possible to evaluate public transport operations in details, including dwell times, intelligent traffic signal timings and holding strategies while modelling impacts from other traffic using statistical distributional data thereby ensuring simplicity in use and fast computational times. This makes it appropriate for analysing the impacts of improvements to public transport operations, individually or in combination, in early planning stages. The paper presents a joint measure of reliability for such evaluations based on passengers’ perceived travel time by considering headway time regularity and running time variability, i.e. taking into account waiting time and in-vehicle time. The approach was applied on a case study by assessing the effects of implementing segregated infrastructure and APTS elements, individually and in combination. The results showed that the reliability of on-street public transport operations mainly depends on APTS elements, and especially holding strategies, whereas pure infrastructure improvements induced travel time reductions. The results further suggested that synergy effects can be obtained by planning on-street public transport coherently in terms of reduced travel times and increased reliability

    Using wearable GPS devices in travel surveys: A case study in the Greater Copenhagen Area

    Get PDF
    GPS data collection has become an important means of investigating travel behaviour, as it ideally provides far more detailed information than traditional travel survey methods. While setting fewer requirements to the respondents, it however sets high requirements to the post processing of the data collected. This study proposes a combined fuzzy logic‐ and GIS‐based algorithm to process raw GPS data. The algorithm is applied to GPS data collected in the highly complex Greater Copenhagen Area network and detects trip legs and distinguishes between five modes of transport. The algorithm shows promising results by (i) identifying trip legs for 82% of the reported trip legs, (ii) not classifying non‐trips such as scatter around activities as trip legs and (iii) identifying the correct mode of transport in more than 90% of trip legs for which corresponding observed modes are available
    corecore